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The generalized molecular orbital (GMO) concept is extended to a higher order method, which begins with
a pair-excited multiconfiguration self-consistent field (PEMCSCF) for the orbital optimization and is followed
by a multireference configuration interaction calculation. Here, this method is referred to as GMO2. The
method has the advantage of being variational, of handling large numbers of active electrons, and of only
needing the user to specify the number of active electrons and orbitals without specifying a dominant MO or
VB configuration. In this paper, we briefly review the PEMCSCF theory, describe in more detail a new and
more efficient optimization procedure, and propose determining the energy with configuration interaction
(CI) at the single, double, triple, and quadruple-excitation levels (SDTQ) as a replacement for the full CI,
which is needed in a complete active space (CAS) method. Several examples of the application of the method
are investigated: methane, tetrahydrogen, benzene, dinitrogen dissociation, acetylene dissociation. For the
five systems studied, the PEMCSCF orbital optimization produces orbitals that only differ from those of a
CASSCF by an average of 4 kcal/mol when both localized bond type or symmetry-adapted orbitals are used
in a full CI, GMO2(FCI). The additional error of replacing full CI with a SDTQ CI, GMO2(SDTQ), is
usually less than 1 kcal/mol.

Introduction

Suitableab initiomethods to calculate the electronic structure
of large molecules with significant multireference character, as
found in many transition metal systems, are generally lacking.
Often the closest Hartree-Fock approximation1 to the ground
state is triplet and/or singlet unstable. When this problem is
severe, it can eliminate Moller-Plesset perturbation methods2

as suitable solutions to the correlation problem. It can also
eliminate coupled cluster methods, such as QCISD(T)3 and
CCSD(T),4 which are based on a single reference as suitable
approximations. Thus, for these cases, one is forced to rely on
variational methods. Simple configuration interaction proce-
dures such as CISD5 may be unsuitable because of lack of size
consistency. One is left with multiconfiguration self-consistent
field methods (MCSCF6, CASSCF7, GVB,8 spin-coupled VB9),
usually followed by multireference configuration interaction
(MRCI10) or by perturbation approximations to the MRCI (CAS-
PT211). For many systems, especially metal complexes and
metal dimer complexes, the number of active electrons is simply
too large for a full CASSCF calculation. Although the GVB
approximation offers a viable alternative in some situations, it
may be difficult to apply in practice when no single VB
reference structure dominates.
Our original generalized molecular orbital12 (GMO1) proce-

dure was developed to overcome many of these deficiencies.
However, it was limited by needing to specify a dominant single
determinant. For many systems with multiple bonds, the wave
function is not dominated by a single determinant. In particular,
metal dimers often have several electronic configurations of the
same overall symmetry that are nearly degenerate.13 For these
problems in both metal and nonmetal systems, one would like
a method with the following characteristics:
1. The method must be variational (satisfied by CASSCF,

GVB, and MRCI but not by MPx, QCISD(T), or CCSD(T)),
2. The method must generate a configuration space small

enough that large numbers of electrons (20 for example) are
easily handled (satisfied by GVB-PP but not by CASSCF), and
3. The method must be free of any requirement for the user

to specify a particular dominant configuration (either MO or
VB). Thus the user should need only to specify the number of
active electrons and the number of active orbitals (satisfied by
CASSCF but not GVB).
Although we refer to the SCF orbital determination followed

by the MRCI as the GMO2 method, the SCF method has been
previously described as the pair-excited multiconfiguration self-
consistent field (PEMCSCF)14a and the even replacement
multiconfiguration self-consistent field method (ERMC).14b In
these methods, one specifies the active space as one would for
the CASSCF calculation, but one only considers paired excita-
tions between all the orbitals. Thus, for a closed shell molecule,
the method is equivalent to a CASSCF with all the configura-
tions having at least one singly occupied orbital eliminated. It
is also equivalent to a GVB calculation where one includes all
excitations of bonding pairs to other pairs’ antibonding orbitals,
thus relaxing, in part, the strong orthogonality constraint of the
GVB-PP wave function. The PEMCSCF method is different
from the earlier proposal by Clementi and Veillard, which only
includes paired excitations from a single reference rather than
all paired excitations.15a

The orbital determination by this method is then followed
by a MRCI calculation to relax the restricted spin pairing
inherent in the PEMCSCF method. In this paper, we describe
a new implementation of this procedure and several applications
in which simpler competing methods such as GVB-PP are
inadequate. Firstly, we will describe the PEMCSCF wave
function and energy; secondly, we will describe the optimization
procedure; thirdly, we will describe several examples.

Theoretical Development

The Pair-Excited Multiconfiguration Self-Consistent Field
(PEMCSCF) Wave Function. Let n′ be the number of CI
inactive doubly occupied orbitalsæ′, n the number of CI active
orbitalsæ, N the number of CI active electron pairs, andS the
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total spin. The PEMCSCF wave functionΨ can be written as
a linear combination ofnCI Slater determinantsΨi. The
determinants are generated by the repartitions (σ) of N electron
pairs into (n- 2S) orbitals with the same 2Sorbitals kept singly
occupied in all the determinants. All the orbitals are orthogonal,
and the total number of electrons is equal to 2(n′ + N + S).

We report in Table 1 the size of the CI matrix for a case in
which the number of active electrons and orbitals is equal and
the spin equals zero and compare it with the CI size of an
equivalent CASSCF calculation. For a system without any
molecular symmetry that would reduce the CI size, the CASSCF
method is limited for practical reasons to the optimization of
12-14 active orbitals. The CASSCF configuration interaction
size with 14 active orbitals is reached in a PEMCSCF that would
optimize 24 active orbitals.
The PEMCSCF wave function is variationally optimized by

minimizing the PEMCSCF energyE according to the two sets
of variables, the configuration interaction coefficients{Ci}i)1,nCI
and the orbitals set{æi}i)1,n and{æ′j}j)1,n′.

where i varies from 1 ton + n′ and j from 1 to nCI. The
PEMCSCF energy can be written as

whereHij is the configuration interaction matrix element:

Because two different Slater determinants in the configuration
interaction differ by two spin orbitals or by more than two, the
off-diagonal nonzero matrix elements are equal to an exchange
integralKkl (the two Slater determinants differ by one doubly
occupied orbital,æk in one determinant andæl in the interacting

determinant)

The diagonal elements of the CI matrix involve only exchange
(Kkl), Coulomb (Jkl), and one-electron (hk) integrals over the (n
+ n′) orbitals.

Thus, the PEMCSCF energy, in terms of one- and two-electron
density matrices, can be simplified by introducing a two-
dimensional matrixG such that

The one-electron density matrix in the PEMCSCF formulation
is a diagonal matrix whose elements are the diagonal elements
of the matrixG. Thus, the PEMCSCF orbitals are the natural
orbitals andFii is the occupation number of the orbitalæi. In
the usual notation,Fij ) Γiijj for i < j andFij ) Γijij for i > j.
Mathematical Development of the Wave Function Opti-

mization Procedure. The first step in the optimization
procedure is to calculate the matrixG referred to as the pseudo-
density matrix in the rest of the article. This calculation involves
performing the configuration interaction to obtain the coef-
ficients {Ci}i)1,nCI. The CI algorithm can take full advantage
of the fact that the list of integrals needed to perform the
configuration interaction calculation can fit in one small two-
dimensional matrix. The active orbitals are separated in two
sets (of size as equal as possible n1 and n2). A Slater
determinant is then encoded by two addresses a1 and a2

where occset1 and occset2 are the active orbital’s occupation of
the electronic configuration in set1 and set2, respectively. The
variable occ is equal to 1 if the orbital is doubly occupied, 0
otherwise. The number of the Slater determinant in the list of
determinants is then stored in a two-dimension matrixA at the
address (a1, a2). The dimension ofA is equal to2max(n1,n2)and
reaches 2048 for a case in which 22 orbitals are to be optimized.
The size of this array corresponds to 17 MB of computer
memory, and thus it can be handled on a workstation with 32
MB of memory and 500 MB of disk space.
After all the Slater determinants have been encoded into a

single implicit FORTRAN loop, the same configuration genera-
tion is then repeated to calculate the nonzero CI matrix elements
by generating the doubly excited configurations of the current
one: the CI matrix element is equal toKij whereæi is the
annihilated doubly occupied orbital andæj the created one. The
previously defined a1 and a2 are calculated for the interacting
configuration andA(a1,a2) gives the absolute address of this
configuration in the list. The calculation of the lowest eigen-
vectors and the associated energies is obtained by using a

TABLE 1: Number of Configuration State Functions (CSF)
in the PEMCSCF and CASSCF Calculations for Equal
Electrons and Active Orbitals

no. of electrons)
no. of orbitals CASSCF PEMCSCF

10 19 404 252
14 2 760 615 3 432
18 449 141 836 48 620
22 705 432
24 2 704 156
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conjugate gradient algorithm. Calculations with 20 CI active
orbitals (CI size) 184 756) have been performed on a Silicon
Graphics Inc. Indigo R4400 and take 110 CPU seconds for
generating the complete CI matrix. The pseudo-density matrix
can be calculated by repeating the CI algorithm, and when the
CI matrix element between configurations a and b equalsKkl (a
different from b), the contributionCaCb is added toFkl (k > l).
The elementsFkl (k< l) are calculated by adding the contribution
Ca

2when the Coulomb integralJkl is involved in the calculation
of the diagonal CI element of configuration a.
In order to reduce the number of iterations and efficiently

control the convergence of the optimization process, a qua-
dratically convergent algorithm is preferred to a Fock matrix
type algorithm. This technique also has the advantage of
allowing the user to freeze orbitals (CI active or inactive) and
is useful in resolving problematic or undesirable rotations
between orbitals.
Using Lévy’s proposal,16 the orbitals at iteration (iter+1) are

expanded in the basis of the orbitals at iteration (iter) by a unitary
transformation in the form of the exponential of a skew-
symmetric matrixX.

The variational equations can be written in terms of the orbital
rotation variablesXij and the CI coefficientsCk.

whereXij is an active rotation andk varies from 1 tonCI.
Two algorithms are then possible:
1. The two-step Newton-Raphson consecutively solves the

two equations. The second equation (i.e., performing the CI
calculation) is solved every iteration. The pseudo-density matrix
is then calculated, the energy is expanded in a Taylor series in
the variablesXij, and the first equation is solved by a Newton-
Raphson procedure.
2. The one-step Newton-Raphson simultaneously solves the

two equations. The second equation is solved at the first
iteration and then the energy is expanded in a Taylor series in
the variablesXij and Ck. Equations 4 are then solved by a
Newton-Raphson algorithm.17

Although the two-step Newton-Raphson algorithm is not
quadratically convergent, it can be used even for very large
calculations. The one-step Newton-Raphson has the advantage
of quadratic convergence, but the Hessian size (coupling
between rotations and CI variables in particular) limits the
method to less than 100 000 Slater determinants (at most 18
active CI orbitals and 18 active electrons) on a standard
workstation.
The Newton-Raphson Equations. The total energy at

iteration (iter+1) is expanded in a Taylor series in the variables
{xi}i)1,nvar x is represented as a linear vector of the variablesXij
andCk, nvar being the total number of variables

where the gradient and the Hessian matrix elements can be
derived using eqs 1 and 2

Even in the one-step Newton-Raphson algorithm the config-
uration interaction is realized efficiently every iteration, and thus
eq 5, which gives a 0 if thevariablexk is a CI coefficient, is
exact. The Hessian matrix can be decomposed into three blocks:
The orbital Hessian, second derivative of the energy with

respect to two orbital rotation parameters:

The CI Hessian, second derivative of the energy with respect
to two CI coefficients:

whereδa
b equals 1 if a equals b and 0 otherwise.

The mixed Hessian, second derivative of the energy with
respect to one CI coefficient and one orbital rotation variable:

Applying the variational theorem to the second-order energy
development

gives the Newton-Raphson set of linear equations:∀i ) 1,
nvar

Since the following equation is always satisfied

the Hessian matrix has a zero eigenvalue for the vector that
corresponds to the CI eigenvector associated with the eigenvalue
E. Different techniques can be used to remedy the problem,
and Bisson’s shift technique18 has been implemented. A
projectorPCI is added to the CI Hessian matrix that removes
the intrinsic eigenvalue without perturbing the convergence.

wheree0 is a large positive number.
The Newton-Raphson eq 7 can be solved by a Choleski

decomposition technique17 for cases of moderate Hessian size
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(3000-5000). For larger cases, the preconditioned generalized
minimum residual17 (GMRES) method is more appropriate.
In the cases where the Hessian matrix has negative eigen-

values, a modified constraint algorithm of Fletcher19 has been
implemented. A submatrix of small size (100-300) is extracted
from the Hessian matrix, corresponding to its smallest diagonal
elements and the largest elements of the gradient vector. The
exact constraint algorithm of Fletcher is then applied to this
submatrix, and since it is small, a Givens diagonalization can
be performed at a low cost. The optimized shift can then be
used in the GMRES algorithm.20 The inverse of the submatrix
is easily calculated after diagonalization and supplies us a
preconditioning matrix of choice for the GMRES method. The
solution of eq 7 leads to an updated set of molecular orbitals
that are used in an iterative process until both the gradient and
the step in the rotation variable space are simultaneously lower
than a small threshold (typically 10-6).
The Rotation Variables. Contrary to CASSCF calculations,

the energy is not invariant upon rotations among the CI active
occupied orbitals.21 These rotations have to be included in the
variable set as well as the rotations between doubly occupied
and CI active orbitals. Rotations among doubly occupied
orbitals and rotations among singly occupied are redundant and
thus are removed from the orbital optimization set.
A second-order Taylor series for eq 3 can be written for all

the occupied orbitals:

It appears from the second-order expansion thatæi
(K+1) is a

function of rotations among virtual orbitals. However, for o
and o′ occupied orbitals and v, v′,v′′, and v′′′ virtual orbitals,
the following equation is verified

while eq 8 is only satisfied at convergence:

The convergence properties are not altered assuming that this
matrix element is always equal to zero.22 Rotations among
virtual orbitals are thus removed from the variable set. The
matrix of the rotationsX (orbital variables of the problem) has
the following structure.

where tA ) -A, A is the submatrix of the rotation among
occupied orbitals, andB is the submatrix of the rotation coupling
occupied and virtual orbitals.

The second-order Taylor series can then be written as:∀i )
1, n + n′

The Preoptimization Process: Orbital Localization. Sev-
eral authors10 have pointed out that rotations among occupied
orbitals are somewhat problematic. A first step in the calcula-
tion only optimizes the rotation among the occupied orbitals
using the guess orbital space. Since the number of occupied
orbitals that have to be optimized is relatively small, the four-
index transformation of the two-electron integrals, performed
every MCSCF iteration, can be done in memory at a low cost.
The transformation from the atomic basis set to the molecular
basis set is performed once at the first iteration. This process
defines an intrinsiclocalization method; several properties of
the preoptimization algorithm may be illustrated on an example.
Study of CH4. A quadruple-ú23 + polarization basis set

[C(13s7p1d/8s4p1d), H(9s1p,4s1p)Rd(C) ) 0.75 andRp(H) )
1.15] was used for this case at a tetrahedral geometry of CH4.
The CH distance was fixed at 2.052 282 a0. The total Hartree-
Fock energy in this basis set is-40.214 360 au. The guess
orbital space is constructed with the five occupied HF orbitals
(one doubly occupied and four strongly occupied orbitals) and
four antibonding orbitals obtained by external projection of the
1s atomic orbitals of the H atom (weakly occupied orbitals) in
the PEMCSCF calculation. All these orbitals can be combined
to form symmetry-adapted orbitals or localized (bond-type)
orbitals. This guess orbital space would be a good candidate
for a valence CASSCF calculation of CH4.24 The 1s orbital of
the carbon is doubly occupied in all the Slater determinants but
optimized. The initial calculation only optimizes the rotations
among the occupied orbitals (no virtual orbitals are involved).
Although the two-electron integrals over the basis functions are
calculated using symmetry, a two-electron integral four-index
transformation has been implemented to calculate the two-
electron integrals over MOs that are not symmetry-adapted.
However, the symmetry can be constrained by deactivating all
the rotations that break the symmetry. The total energy and
the number of iterations necessary to get to the convergence
are reported in Table 2. While calculations using symmetry-
adapted orbitals or localized (bond-type) orbitals converge
without difficulty, the Hessian matrix in the former calculations
has negative eigenvalues reflecting the fact that a point of lower
energy exists. In this particular example, the use of localized
(bond-type) orbitals allows convergence to a lower energy. The
fast in-core two-electron transformation allows the user to
improve the localized (bond-type) guess orbitals for the
subsequent step of orbital optimization and thus is referred to
as a preoptimization process. Le´vy25 has shown on some
examples that the complete multiconfiguration self consistent
field theory26 (CMC), in which a subspace of the PEMCSCF
configuration interaction space is used, converges to lower
energies using localized (bond-type) orbitals than do symmetry-
adapted orbitals. The PEMCSCF results on CH4 show a similar
behavior.

TABLE 2: Study of CH 4. Total Energy and Number of
Iterations To Converge the PEMCSCF Calculation by
Optimizing Rotations among Occupied Orbitals

strongly occupied
orbitals

weakly occupied
orbitals

total PEMCSCF
energy (au)

no. of
iterations

symmetry-adapted symmetry-adapted-40.243 417 4
symmetry-adapted bond-type orbitals -40.261 522 16
bond-type orbitals symmetry-adapted-40.261 522 16
bond-type orbitals bond-type orbitals -40.261 522 3
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The Optimization Process. The rotations among the oc-
cupied orbitals are kept active during the optimization process
in which virtual orbitals are added to the occupied in order to
be optimized. The values of the Hessian matrix and gradient
vector elements are calculated analytically using eqs 5 a-c with
the orbital derivative expressions:

The calculation of the Hessian matrix requires integrals that
involve at most two virtual orbitals. The orbital Hessian and
gradient are calculated by a double Fortran loop over the
occupied molecular orbitals where the first and second deriva-
tives of the one-electron, Coulomb, and exchange integrals are
calculated analytically. The nontrivial part of the mixed Hessian
is calculated directly by reproducing the CI algorithm, and the
analytical derivatives of theKij integrals are calculated as needed
and thus do not require any additional memory.
Study of CH4. Using the preoptimized localized (bond-type)

orbitals as guess vectors, the PEMCSCF calculation is performed
with an orthogonal complement of the basis set as virtual
orbitals. The total energy, norm of the gradient vector, norm
of the stepX and shift of the Hessian matrix are reported in
Table 3. The calculation converges in five iterations using the
one-step Newton-Raphson algorithm with a threshold on the
norm of the gradient equal to 10-6.
The GMO2(SDTQ) Energy Evaluation. Although the

PEMCSCF method gives a large amount of correlation energy,
it retains some intrinsic problems connected to the absence of
configurations with unpaired electrons like dissociation into
multiplets and spectroscopic states. However, to fairly compare
GMO2 with the CASSCF method, a full CI in the PEMCSCF
optimized orbital set should be used, GMO(FCI). While it is
possible to optimize 18 orbitals with 18 active CI electrons using
the PEMCSCF method, the full CI calculation in the space of
these 18 orbitals is beyond reach.27 In the mean time, it is likely
that there is only a small number of CSF in this full-CI
calculation that have an important effect. Thus, an alternative,
invoking only single, double, triple, and quadruple excitations
(GMO2(SDTQ)), has been developed for large applications.
For the GMO2(SDTQ) calculations, a full CI calculation is

performed only within the strongly occupied orbitals of the
PEMCSCF (orbitals with a PEMCSCF occupation number
greater than some tolerance, say 0.4) and subsequently followed
by all the single, double, triple, and quadruple excitations
(SDTQ) of all the possible active orbitals from this CAS
reference space into the rest of the optimized orbitals. As the
CI size increases drastically with the number of orbitals and
active electrons, the triple and quadruple excitations can be
restricted to a small dimension orbital subspace (orbitals with

a PEMCSCF occupation number greater than some tolerance,
say 0.1), while performing all the single and double excitations
from the references to the remainder of the complete optimized
orbital space. The total energy will be higher than the CAS CI
total energy, GMO(FCI), but should take into account a large
fraction of the CAS correlation energy and include important
effects of spin recoupling.
To take into account dynamical correlation effects, the

GMO2(SDTQ) procedure can be used to isolate a configuration
reference space for subsequent MRCI calculations with excita-
tions outside the optimized orbital space.
The GMO2(SDTQ) configuration interaction program is

developed to minimize the amount of memory and disk space
needed. The two-electron integral list over the PEMCSCF
optimized orbitals is, in all the cases, small enough to be stored
in memory at all time, roughly proportional ton4/8. The process
implicitly builds the list of configurations and for each electronic
configuration generates only the singly and doubly excited
configurations interactinga priori with the current one, by using
the following pattern (see Scheme 1). Double excitations are
possible from orbitalæa andæb, doubly or singly occupied in
the current configuration to orbitalæc andæd, singly occupied
or unoccupied in the current configuration. The single excitation
is realized from orbitalæa to orbitalæb.28

This pattern generates all the possible interacting doublets
of configurations without repetition. When two interacting
electronic configurations (I and J) are generated, the list of Slater
determinants of configuration I is implicitly constructed, and
only the nonzero CI matrix elements are evaluated by generating
the Slater determinants of configuration J that are singly and
doubly excited from the current determinant. The value of the
CI matrix element is easily obtained and most of the effort is
devoted to calculating theaddressof the generated determinant
in the list of the determinants of configuration J. This address
is a function of the number of unpaired electrons in configuration
J. By restricting the excitation in GMO2(SDTQ) to quadruple
excitations, the arbitrary limit of 14 unpaired electrons does not
represent a restriction but allows us to encode a determinant
by using a technique similar to that in section 3.29

where occ equals 0 for anR spin and 1 for aâ spin.
The block of CI matrix expressed in the basis of Slater

determinants can be transformed easily to a spin-adapted
configuration state function basis if necessary. The program
calculates the lowest eigenvalues of this CI matrix with a
conjugate gradient algorithm recalculating the CI matrix every
iteration.
Study of CH4. To evaluate the quality of the GMO2 method,

the GMO2(FCI) and GMO2(SDTQ) energies are compared to
the CASSCF energy. In Table 4, the total energies are reported
for CH4 using the symmetry-adapted optimized PEMCSCF
orbitals or the localized (bond-type) orbitals. The CASSCF
energy is lower than the GMO2(FCI) by 2.8 kcal/mol when
the PEMCSCF is constrained to converge to symmetry-adapted
orbitals and by 3.0 kcal/mol when the localized orbital solution

TABLE 3: Study of CH 4. Total Energy, Shift of the
Hessian Matrix, Norm of the Gradient Vector, and Norm of
the Step X in the Orbital Rotation Spacea

iteration energy (au) shift |grad| |x|
1 -40.261 522 0.033 020 0.093 254 0.548 008
2 -40.274 910 0.0 0.020 811 0.235 881
3 -40.275 861 0.0 0.003 051 0.005 855
4 -40.275 863 0.0 0.000 003 0.000 018
5 -40.275 863 0.0 0.000 000 0.000 000

a Trust region radius has an initial value of 0.5.
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is used. These small differences can be interpreted as the effect
of configurations with unpaired electrons on the orbital opti-
mization. These differences represent only 5.8% of the cor-
relation energy at the CASSCF level. GMO2(SDTQ) is only
higher than the GMO2(FCI) by a fraction of a kcal/mol and
thus represents an accurate approximation of GMO2(FCI).

The GMO2 localization procedure is illustrated in the study
of a square H4 system and in the study of the ground state of
benzene. In order to calculate relative energies and test the
reliability of the GMO2 procedure, the linear dissociation of
multiple bonds is studied with two examples: N2 and C2H2.

Results and Discussion

Study of the GMO2 Localization Procedure in a Square
H4 System. In the planar H exchange reaction of H2 with H2,
the transition state of the system is characterized by a square
geometry. While the GVB-PP method can represent the
reactants and products of the reaction by a perfect pairing of
two electron pairs, this method is unsuitable to calculate the
energy of the square transition state. GVB-PP(FCI), GMO2-
(FCI) and CASSCF calculations were performed using a
quadruple-ú23 + polarization basis set H (9s1p/4s1p) (Rp(H) )
1.0) at the CASSCF optimized geometry (dHH ) 1.287 76 au)
of the transition state. PEMCSCF and GVB-PP calculations
are performed using both delocalizedD4h symmetry orbitals and
localized orbitals. The results are presented in Table 5. The
GVB-PP and PEMCSCF procedures converge to a similar
energy (if not equal) using localized orbitals in both calculations.
These localized orbitals are described by two H-H bonds and

two H-H antibonds. Performing the FCI in these optimized
orbitals gives an energy difference equal to 9.9 kcal/mol
compared to the CASSCF energy. Using symmetry-adapted
(delocalized) orbitals, the GVB-PP converges to a higher energy
and the FCI performed with the optimized orbitals is 16.5 kcal/
mol higher than the CASSCF energy. While the PEMCSCF
procedure converges to higher energy when constraining the
orbitals to be symmetry-adapted, the GMO2(FCI) energy is only
4.1 kcal/mol higher than the CASSCF energy.
GMO2 Study of the Localization Process in Benzene.The

geometry of the benzene molecule was optimized at the
Hartree-Fock level using a triple-ú basis set30 for C(10s6p/
5s3p) and H(5s/3s). The CC and CH bond distances are equal
to 1.387 and 1.073 Å, respectively. GMO2 and CASSCF
calculations were performed at this geometry in theπ orbitals
of the molecule only (six electrons in six orbitals). The
Hartree-FockσCH andσCCwere kept frozen in the calculations,
and we focus here on the localization of the orbitals within the
π system of benzene and its effect on the energy. For the
GMO2 calculation, guess orbitals are constructed using the three
HF occupied orbitals and three virtual orbitals obtained by
external projection of ad-hoc carbon 2p orbital combinations.
These orbitals areD6h symmetry-adapted (delocalized) orbitals.
The first step in the GMO2 calculation is to preoptimize the
guess vectors. At the first iteration, the Hessian matrix has three
negative eigenvalues whose respective eigenvectors are or-
thogonal to the gradient vector. These eigenvectors represent
the simultaneous mixing of the strongly occupied orbitals among
themselves and of the weakly occupied among themselves.
Although the Newton-Raphson algorithm optimizes an orbital
step orthogonal to these eigenvectors, the final orbital step is
obtained by adding a linear combination of these eigenvectors
to the Newton-Raphson step. At the second iteration, the
Hessian matrix has negative eigenvalues nonorthogonal to the
gradient vector, and thus the orbital step is optimized using the
constrained algorithm of Fletcher. The preoptimization process
converges then to localized orbitals. These orbitals are finally
fully optimized by completing theπ basis set with virtualπ
orbitals. At the PEMCSCF level of theory, the electronic
structure can be interpreted as a Kekule´ structure where the pair
excitation from a bond orbital to its corresponding antibonding
localized orbital maximizes the electron correlation. The GMO2
calculation is completed by performing a full CI calculation in
the π orbitals. The GMO2(FCI) energy is higher than the
π-CASSCF energy by only 2.3 kcal/mol.
The optimized GMO2 localized orbitals can be transformed

to symmetry-adapted orbitals by appropriate linear combination.
A second GMO2 calculation was performed constraining the
orbitals to be symmetry-adapted. Although the PEMCSCF
energy is then 8.7 kcal/mol higher in energy than the PEMCSCF
energy calculated with localized orbitals, the GMO2(FCI) energy
using the symmetry-adapted orbitals is only 0.7 kcal/mol higher
than the CASSCF energy of benzene.
Although the PEMCSCF procedure tends to converge to

lower energies using localized orbitals than symmetry-adapted
(delocalized) ones, the GMO2(FCI) energy is lower using
symmetry-adapted orbitals and gives results closer in energy
to the CASSCF results. The GMO2 energy may result in a
lower energy using localized orbitals for larger systems, in which
the localized bond-antibond excitations may play a dominant
role, especially at the SDTQ level.
GMO2 Study of the Linear Dissociation of Multiple

Bonds. In order to investigate the eventual deficiencies of
GMO2 compared to CASSCF, multiple bond breaking is studied
in two examples. Since GMO2’s orbitals are optimized in a

TABLE 4: Total Energy of CH 4 at Different Levels of
Theory: Hartree-Fock, PEMCSCF, GMO2(SDTQ),
GMO2(FCI), and CASSCFa

method

total energy (au)
localized (bond-type)

orbitals

total energy (au)
symmetry-adapted

orbitals

HF -40.214 360
PEMCSCF -40.275 863 (13.2) -40.247 861 (30.2)
GMO2(SDTQ) -40.292 123 (3.1) -40.292 463 (2.8)
GMO2(FCI) -40.292 161 (3.0) -40.292 521 (2.8)
CASSCF -40.296 988
a Energy differences from the CASSCF energy in kcal/mol.

TABLE 5: Total Energy of H 4 at the GVB-PP,
GVB-PP(FCI), PEMCSCF, GMO2(FCI), and CASSCF
Levels of Theorya

localized (bond-type)
orbitals (au)

symmetry-adapted
orbitals (au)

GVB-PP -2.037 91 -1.984 90
GVB-PP(FCI) -2.060 37 (9.9) -2.049 89 (16.5)
PEMCSCF -2.037 91 -2.002 57
GMO2(FCI) -2.060 37 (9.9) -2.069 64 (4.1)
CASSCF -2.076 17
a Energy differences from the CASSCF energy in kcal/mol.

TABLE 6: Total Energy of Benzene at Different Levels of
Theory: Hartree-Fock, PEMCSCF, GMO2(FCI), and
CASSCF with Localized (Bond-Type) Orbitals and
Symmetry-Adapted Orbitalsa

localized (bond-type)
orbitals (au)

symmetry-adapted
orbitals (au)

HF -230.673 65
PEMCSCF -230.718 27 -230.704 35
GMO2(FCI) -230.744 63 (2.3) -230.747 48 (0.5)
CASSCF -230.748 25
a Energy differences from the CASSCF energy in kcal/mol.
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calculation involving only pair electron (PE) excitations, it is
expected that the dissociation into high-spin fragments may be
problematic. However, the spin recoupling in GMO2 is made
possible by the configuration interaction using PE-optimized
orbitals.
GMO2 Study the Linear Dissociation of N2. A quadruple-

ú23 + polarization N(13s7p1d/8s4p1d) (Rd ) 1.0) basis set was
used in the following calculations. The potential energy surface
was calculated at several levels of theory, HF, PEMCSCF,
GMO2(FCI) and CASSCF (Figure 1). The active CI orbital
space in the optimization of the orbitals in the GMO2 and
CASSCF calculations is composed of one nonbonding orbital
on each nitrogen atom, three bonding orbitals (σ, πx, andπy)
and their corresponding antibonding orbitals (σ*, πx*, andπy*).
In this orbital space, the CASSCF dissociation limit for the
ground state X1Σg

+ is the singlet coupling of two nitrogen atoms
in their ground state4S-(s2p3). Although the N2 triple bond
may be represented at the equilibrium distance by a perfect-
pairing GVB reference, the asymptotic value of the GVB-PP
energy does not represent the singlet coupling of two4S nitrogen
atoms. The PEMCSCF wave function shows a similar behavior
and does not dissociate into two nitrogen ground state atoms.
While the correct spin coupling is prohibited by both GVB-PP
and PEMCSCF wave functions, using the orbitals optimized
by the PEMCSCF procedure in a full configuration interaction
reproduces the CASSCF energy accurately. The maximum
energy difference between the CASSCF energy and the GMO2-
(FCI) energy is obtained for a internuclear distance close to the
equilibrium geometry and is less than 2 kcal/mol, see Figure 2.
Thus, the GMO2 procedure can reliably predict spin recoupling
and multiple-bond breaking.

GMO2 Study of the Linear Dissociation of C2H2. While
the linear dissociation of C2H2 into two CH fragments overlaps
with the previous study as it is also a multiple-bond-breaking
reaction, the spin-recoupling effects are different because the
ground state of CH is a2Π at the CASSCF level instead of a
4Σ-, which is the HF ground state of CH. A quadruple-ú23 +
polarization basis set: C(13s7p1d/8s4p1d), H (9s1p/4s1p) (Rd-
(C) ) 0.85 andRp(H) ) 0.95) was used in this study. A
CASSCF calculation involving only CC bonds would dissociate
C2H2 into two fragments CH (4Σ-) with an energy profile similar
to the one calculated for N2. A complete valence CASSCF (10
electrons/10 orbitals) would dissociate into two fragments CH
(2Π).
GMO2 and CASSCF calculations were performed on the4Σ-

and2Π states of CH and on the X1Σg
+ ground state of C2H2.

The GMO2 study of CH4Σ- was performed by optimizing five
orbitals: two singly occupiedπx and πy orbitals, one singly
occupied nonbonding orbital, the bondingσCH orbital, and a
correlating antibondingσCH*, the latter two with variable
occupancy. The GMO2 study of the2Π state of CH was
performed by also optimizing five orbitals: one singly occupied
πx orbital, two strongly occupiedσ orbitals, one weakly occupied
σCH* orbital, and the weakly occupiedπy orbital. For both
states, a GMO2(FCI) was performed using the optimized orbital
space and compared to a CASSCF calculation in an equivalent
space.31 The results are presented in Figure 3. Both GMO2
and CASSCF energy curves present a minimum for the same
CH distances: the equilibrium distance is equal to 2.15 au for
the2Π state and 2.05 au for4Σ-. The energy difference between
GMO2 and CASSCF is constant for CH distances close to the
equilibrium geometry and is equal to 0.4 and 1.2 kcal/mol for
the 2Π and4Σ- states, respectively.
The energy profile of the C2H2 linear dissociation reaction

can be separated into two regions:
1. CC distance ranging from 2.0 to 3.6 au.In this region,

the HF reference is dominant and can be interpreted as a triple
bond. The CH bond distance is optimized at the CASSCF level.
The potential energy curve in this region is calculated at several
levels of theory, HF, PEMCSCF, GMO2(SDTQ), GMO2(FCI),
and CASSCF, and represented in Figure 4. The GMO2(SDTQ)
is performed with a reference configuration space restricted to
a single Slater determinant built with the strongly occupied
orbitals of the PEMCSCF calculation. In this region, the
maximum energy difference between GMO2(SDTQ) and GMO2-
(FCI) is small (less than 0.3 kcal/mol at the equilibrium
geometry) and becomes significant (equal to 2 kcal/mol) when
theπ* orbitals’ occupancy reaches 0.283 for a CC distance equal
to 3.3 au. It is likely that configurations involving an orbital
with an occupancy higher than 0.3 must be included in the
reference space for the GMO2(SDTQ). The energy difference

Figure 1. Potential energy of N2 1Σg+ at various levels of theory.

Figure 2. Potential energy of N2 1Σg+ near the equilibrium bond
distance at GMO2 and CASSCF levels of theory.

Figure 3. Potential energy curves for2Π and 4Σ- states of CH at
various levels of theory.

6942 J. Phys. Chem. A, Vol. 101, No. 37, 1997 Couty and Hall



between the GMO(FCI) and CASSCF results increases from
3.3 to 6.5 with the CC bond distance. At the equilibrium
geometry, the difference is equal to 4.0 kcal/mol (2.4 kcal/mol
of this difference is from the isolated fragments CH4Σ-), and
is small compared to the value of the electron correlation energy
at the CASSCF level (95 kcal/mol). This energy difference is
also small compared to the contribution to the total energy of
electronic configurations with unpaired electrons, a value equal
to the difference between the GMO2(FCI) and PEMCSCF
energies (36.5 kcal/mol).
2. CC distance ranging from 3.6 to 15 au.For intermediate

CC distances, an avoided crossing between an attractive covalent
1Σg

+ arising from the singlet coupling of two CH4Σ- states
and a repulsive1Σg

+ arising from the singlet coupling of two
CH 2Π states is predicted. The challenge of GMO2 is then to
correctly describe the complete change in the wave function
(CI coefficients and orbitals). The potential energy curve is
given in Figure 5 at the PEMCSCF, GMO2(FCI) and CASSCF
levels. Apart from the avoided crossing that occurs in that
region, the repulsive1∆g state of C2H2 is close in energy to the
1Σg

+. However, at the PEMCSCF level, these two states do
not mix and the∆g state is easily identified by the fact that the
CI coefficient on the configurationσCH2σCH2σCC2πx

2πy
2 is equal

to zero. An excited state optimization procedure has been
implemented in the GMO2 code. At the CASSCF level of
theory, the nature of the wave function changes for a CC
distance close to 5.5 au. The optimized CH bond distance
changes from a value that is close to the optimized equilibrium
bond distance in CH4Σ- to a value close to that in CH2Π (see
Figure 6). Depending on the guess vectors used to initialize
the GMO2 optimization, the calculation for the CC distance
equal to 4.5 au converges to two1Σg

+ wave functions, both
first roots of the PEMCSCF configuration interaction with

different associated energies and different CI expansions. A
GMO2(FCI) performed with these optimized orbitals gives two
different energies. In Table 7, the total energies of the
PEMCSCF, GMO2, and CASSCF calculations are reported. The
CASSCF results are comparable to the GMO2 (FCI) results
obtained with the orbital set 2 since the CI expansions are
similar. Thus, the PEMCSCF calculation reflects that the
crossing has already occurred. The effect of the spin-coupling
constraints at the PEMCSCF level are illustrated by a schematic
representation of diabatic energy curves (at the CASSCF and
PEMCSCF levels) in Figure 7. The PEMCSCF wave function
that dissociates into two CH (4Σ-) is constrained to a perfect-
pairing coupling of the two fragments. The difference in energy
with the CASSCF dissociation energy is larger than the
equivalent difference concerning the dissociation into two CH
(2Π) fragments. Although the GMO2 procedure depends
essentially on the PEMCSCF orbital optimization process, the
maximum difference of the total energy is only higher than 7
kcal/mol for CC internuclear distances close to 5.0 au. For long
CC distances, the GMO2 and CASSCF energy difference is
extremely small (lower than 1 kcal/mol) and close to the
difference calculated for the isolated fragments.
Unlike the GVB-PP that would dissociate C2H2 into two CH

(4Σ-) fragments, the GMO2 procedure takes into account the
interaction of low-energy states. The energy difference between
GMO2(FCI) and the CASSCF method is small at all geometries.

Figure 4. Potential energy curves for the C2H2
1Σg+ state at various

levels of theory for bond distances between 2.0 and 3.6 au.

Figure 5. Potential energy curves for the C2H2
1Σg+ state at various

levels of theory for bond distances beyond 3.6 au.

Figure 6. CH bond distances as a function of CC bond distances for
dissociation of the1Σg+ state of C2H2 at the CASSCF level.

TABLE 7: Total Energy (au) of C 2H2 for a CC Internuclear
Distance of 4.5 au at the PEMCSCF, GMO2(FCI), and
CASSCF Levels of Theory. Two Sets of Orbitals Are
Optimized for the First Root of the PEMCSCF Calculation

orbital set 1 orbital set 2

PEMCSCF -76.550 44 -76.519 90
GMO2(FCI) -76.625 53 -76.632 00
CASSCF -76.643 47

Figure 7. Schematic representation of diabatic energy curves at the
CASSCF and PEMCSCF levels.
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Conclusion. The GMO2 method, a PEMCSCF orbital
optimization followed by a SDTQ configuration interaction
energy determination in the active space, is a viable alternative
to CASSCF methods when the number of active electrons is
very large. In the future, the method may be particularly useful
in transition metal systems, where complexes with multiple
metal-ligand bonds32 and dimers with multiple metal-metal
bonds or bridging pi-acceptor ligands have significant multi-
reference character. Thus, the technique should be included in
our repertoire of restricted active space self-consistent field
methods.
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