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The generalized molecular orbital (GMO) concept is extended to a higher order method, which begins with
a pair-excited multiconfiguration self-consistent field (PEMCSCEF) for the orbital optimization and is followed

by a multireference configuration interaction calculation. Here, this method is referred to as GMO2. The
method has the advantage of being variational, of handling large numbers of active electrons, and of only
needing the user to specify the number of active electrons and orbitals without specifying a dominant MO or
VB configuration. In this paper, we briefly review the PEMCSCF theory, describe in more detail a new and
more efficient optimization procedure, and propose determining the energy with configuration interaction
(CI) at the single, double, triple, and quadruple-excitation levels (SDTQ) as a replacement for the full Cl,
which is needed in a complete active space (CAS) method. Several examples of the application of the method
are investigated: methane, tetrahydrogen, benzene, dinitrogen dissociation, acetylene dissociation. For the
five systems studied, the PEMCSCEF orbital optimization produces orbitals that only differ from those of a
CASSCF by an average of 4 kcal/mol when both localized bond type or symmetry-adapted orbitals are used
in a full Cl, GMO2(FCI). The additional error of replacing full Cl with a SDTQ CI, GMO2(SDTQ), is
usually less than 1 kcal/mol.

Introduction enough that large numbers of electrons (20 for example) are
easily handled (satisfied by GVB-PP but not by CASSCF), and
3. The method must be free of any requirement for the user
to specify a particular dominant configuration (either MO or
VB). Thus the user should need only to specify the number of
state is triplet and/or singlet unstable. When this problem is active electrons and the number of active orbitals (satisfied by
severe, it can eliminate MollerPlesset perturbation methdds CASSCF but not GVB). ) o
as suitable solutions to the correlation problem. It can also Although we refer to the SCF orbital determination followed
eliminate coupled cluster methods, such as QCISD@Rd by the MRCI as the GMO2 method, the SCF method has been

CCSD(T)# which are based on a single reference as suitable previously described as the pair-excited multiconfiguration self-
approximations. Thus, for these cases, one is forced to rely onconsistent field (PEMCSCF}* and the even replacement
variational methods. Simple configuration interaction proce- Multiconfiguration self-consistent field method (ERM&).In
dures such as CISDnay be unsuitable because of lack of size these methods, one specifies the active space as one would for
consistency. One is left with multiconfiguration self-consistent the CASSCF calculation, but one only considers paired excita-
field methods (MCSCE CASSCF, GVB.2 spin-coupled VB), tions between all the orbitals. Thus, for a closed shell molecule,
usually followed by multireference configuration interaction the method is equivalent to a CASSCF with all the configura-
(MRCI9) or by perturbation approximations to the MRCI (CAS- tions having at least one singly occupied orbital eliminated. It
PT21). For many systems, especially metal complexes and is also equivalent to a GVB calculation where one includes all
metal dimer complexes, the number of active electrons is simply excitations of bonding pairs to other pairs’ antibonding orbitals,

too large for a full CASSCF calculation. Although the GVB thus relaxing, in part, the strong orthogonality consprair)t of the
approximation offers a viable alternative in some situations, it GVB-PP wave function. The PEMCSCF method is different

may be difficult to apply in practice when no single VB from the eafller prop_osgl by Clement.| and Veillard, which only
reference structure dominates. includes paired excitations from a single reference rather than
Our original generalized molecular orb#a(GMO1) proce- 2l paired excitationg?® _ _
dure was developed to overcome many of these deficiencies. The orbital determination by this method is then followed
However, it was limited by needing to specify a dominant single by & MRCI calculation to relax the restricted spin pairing
determinant. For many systems with multiple bonds, the wave inherent in the PEMCSCF method. In this paper, we describe
function is not dominated by a single determinant. In particular, & New implementation of this procedure and several applications
metal dimers often have several electronic configurations of the in which simpler competing methods such as GVB-PP are

Suitableab initio methods to calculate the electronic structure
of large molecules with significant multireference character, as
found in many transition metal systems, are generally lacking.
Often the closest Hartred=ock approximatiohto the ground

same overall symmetry that are nearly degenéfateor these ~ inadequate. Firstly, we will describe the PEMCSCF wave
problems in both metal and nonmetal systems, one would like function and energy; secondly, we will describe the optimization
a method with the following characteristics: procedure; thirdly, we will describe several examples.

1. The method must be variational (satisfied by CASSCF, _
GVB, and MRCI but not by MPx, QCISD(T), or CCSD(T)),  Theoretical Development

2. The method must generate a configuration space small The Pair-Excited Multiconfiguration Self-Consistent Field

T T : . (PEMCSCF) Wave Function. Let n' be the number of ClI
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TABLE 1: Number of Configuration State Functions (CSF) determinant)
in the PEMCSCF and CASSCF Calculations for Equal
Electrons and Active Orbitals

1
Ky = 1 1)— o (2 2
no. of electrons= Ki flj;([)k( ) ¢i(2) " ¢ (2) ¢|(2) drydr,

no. of orbitals CASSCF PEMCSCF
10 19 404 252 The diagonal elements of the CI matrix involve only exchange
14 2760615 3432 (K1), Coulomb @), and one-electrorhf) integrals over then(
18 449 141 836 48 620 —+ n’) orbitals.
22 705 432
24 2704 156

1
Ja = J.L,0d1) 9 1) = ¢,(2) ¢(2) dr,dr
total spin. The PEMCSCF wave functid¥ can be written as . flfz X X M2 l I 2

a linear combination ofng; Slater determinant3l;. The

determinants are generated by the repartitiof®{ N electron Z,

pairs into (1 — 2S) orbitals with the sameSorbitals kept singly h, = ﬁgﬁk(l) T- zr_ P(1) dry
occupied in all the determinants. All the orbitals are orthogonal, @ lal

and the total number of electrons is equal to'2¢ N + S). Thus, the PEMCSCF energy, in terms of one- and two-electron

o density matrices, can be simplified by introducing a two-
w=YCw, dimensional matrix such that
i= n+n' n+n’ n-+n' ZuZﬂ
W, = |§0'1€_0'1---§0'n'(77'n'€01---§02s¢23+o(i,1)§77zs+a(i,1)--- E= 2 pi(2h + J;) + ;Pij‘]ij + ;Pij KiJ' - O; Ru./i
P osto(in-29P25to(in-29)] (2

n. = (n723 The one-electron density matrix in the PEMCSCF formulation
cl N is a diagonal matrix whose elements are the diagonal elements
of the matrixp. Thus, the PEMCSCF orbitals are the natural

We report in Table 1 the size of the CI matrix for a case in . ) X -
g orbitals andp; is the occupation number of the orbital In

which the number of active electrons and orbitals is equal an h | ; — T fori <iande: = L fori > i
the spin equals zero and compare it with the CI size of an € usrl:a no_tatllorpij o iij TOr | . g]an pi = Lijj fort = J.
equivalent CASSCF calculation. For a system without any _MaF emFE;mca dDeve OTtherf‘_t of the ngehFunctlc_)n_Opy-
molecular symmetry that would reduce the Cl size, the CASSCF m|zat|gn roce ulre.l ﬁ Irst .stefp mdt € opr)]tlmlzangn
method is limited for practical reasons to the optimization of Procedure s to calculate the matgxeferred to as the pseudo-
12—14 active orbitals. The CASSCF configuration interaction density matrix in the rest of_the ‘.”‘“‘C'e- T his calcula_t|on involves
size with 14 active orbitals is reached in a PEMCSCF that would pe_rformmg the configuration Interaction to obtain the coef-
optimize 24 active orbitals ficients {C}i=1n,. The CI algorithm can take full advantage
The PEMCSCF wave function is variationally optimized by of the fac_t th_at the _“St of |ntegrals nee_dgd to perform the
minimizing the PEMCSCF energ§ according to the two sets configuration interaction calculation can fit in one small two-
of variables, the configuration interaction coefficief€} i—1 n, d|men5|ongl matrix. The active o!rbltals are separated in two
and the orbitals setg}i—1, and{¢'}i—1x sets (of size as equal as possible n1 and n2). A Slater
I W= determinant is then encoded by two addresses al and a2

= WHWO "
Wwo al= Y ocg, ()2 "
oE -
— = 0
(8(pi) oz S\ Ai—1
a2= ") 0CGfi)2
oE\ _ i=
(301') 0

where ocge; and ocgerz are the active orbital’s occupation of
the electronic configuration in setl and set2, respectively. The
variable occ is equal to 1 if the orbital is doubly occupied, O
otherwise. The number of the Slater determinant in the list of
nei determinants is then stored in a two-dimension mahriat the
z CCH; address (al, a2)The dimension oA is equal to2ma("1.n2)gnd
=1 reaches 2048 for a case in which 22 orbitals are to be optimized.
E=——— 1) The size of this array corresponds to 17 MB of computer
ner 5 memory, and thus it can be handled on a workstation with 32
G MB of memory and 500 MB of disk space.
After all the Slater determinants have been encoded into a
whereH; is the configuration interaction matrix element: single implicit FORTRAN loop, the same configuration genera-
tion is then repeated to calculate the nonzero Cl matrix elements
H; = W H¥,0 by generating the doubly excited configurations of the current
one: the CI matrix element is equal #; where ¢; is the
Because two different Slater determinants in the configuration annihilated doubly occupied orbital aggithe created one. The
interaction differ by two spin orbitals or by more than two, the previously defined al and a2 are calculated for the interacting
off-diagonal nonzero matrix elements are equal to an exchangeconfiguration andA(al,a2) gives the absolute address of this
integralKy (the two Slater determinants differ by one doubly configuration in the list. The calculation of the lowest eigen-
occupied orbitalgy in one determinant ang, in the interacting vectors and the associated energies is obtained by using a

wherei varies from 1 ton + n" andj from 1 tong. The
PEMCSCF energy can be written as
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conjugate gradient algorithm. Calculations with 20 CI active where the gradient and the Hessian matrix elements can be
orbitals (Cl size= 184 756) have been performed on a Silicon derived using eqs 1 and 2
Graphics Inc. Indigo R4400 and take 110 CPU seconds for

generating the complete Cl matrix. The pseudo-density matrix oE i [ ohy 0| i 8y

can be calculated by repeating the CI algorithm, and when the g(x=0)=|— =) pil2—+ |t )+

Cl matrix element between configurations a and b egkialéa x=0 1= M % =%
different from b), the contributio€.C, is added tqoy (k > 1). it 9K

The elementgy (k < I) are calculated by adding the contribution z i (5a)
C22 when the Coulomb integrdl, is involved in the calculation 5%

of the diagonal CI element of configuration a.

In order to reduce the number of iterations and efficiently
control the convergence of the optimization process, a qua-
dratically convergent algorithm is preferred to a Fock matrix
type algorithm. This technique also has the advantage of
allowing the user to freeze orbitals (CI active or inactive) and
is useful in resolving problematic or undesirable rotations
between orbitals. 23

Using Levy’s proposal® the orbitals at iteration (iteir1) are —Sol2 " 3
expanded in the basis of the orbitals at iteration (iter) by a unitar - Z il <
tra%sformation in the form of the exponenti(al ())fya skew-y WP Xedfx=0 = M Xoa  XatIXe

Even in the one-step NewterRaphson algorithm the config-
uration interaction is realized efficiently every iteration, and thus
eq 5, which give a 0 if thevariablex, is a Cl coefficient, is
exact. The Hessian matrix can be decomposed into three blocks:
The orbital Hessian, second derivative of the energy with
respect to two orbital rotation parameters:
32E n+n' azh

symmetric matrixX. ”f' %, "E’ IK; (5b)
_ _ bt )e o G
qu(ltehLl)(X) — zexpo()qujj(lter) (3) ] axabaxcd =] 8Xabaxcd
: The Cl Hessian, second derivative of the energy with respect
w = —X to two Cl coefficients:
The variational equations can be written in terms of the orbital 1 &E —H SPE 5
rotation variables<; and the Cl coefficient€. 2\3caC,), o~ e Oa (5¢)
(§7E) =0 Whereéf1 equals 1 if a equals b and 0 otherwise.
ij The mixed Hessian, second derivative of the energy with
respect to one CI coefficient and one orbital rotation variable:
dEY _
=0 )
9C 1| ¥E no 9H, 9E
: . . . - = )C G| (5d)
whereX; is an active rotation anll varies from 1 tonc,. 20C X /y=0 =1 Xy bef x=0

Two algorithms are then possible:
1. The two-step NewtonRaphson consecutively solves the Applying the variational theorem to the second-order energy
two equations. The second equation (i.e., performing the Cl development
calculation) is solved every iteration. The pseudo-density matrix
is then calculated, the energy is expanded in a Taylor series in (EK) =0 (6)
the variables;;, and the first equation is solved by a Newton X
Raphson procedure.
2. The one-step NewterRaphson simultaneously solves the gives the NewtorrRaphson set of linear equation&li = 1,
two equations. The second equation is solved at the first Mvar
iteration and then the energy is expanded in a Taylor series in N
the variablesX; and C.. Equations 4 are then solved by a iy
Newton—RaphJson algorithri’ ZHesg(x=O)Xj = —g(x=0) )
Although the two-step NewtenRaphson algorithm is not 1=

quadrat.ically convergent, it can be used even for very large gjpce the following equation is always satisfied
calculations. The one-step NewteRaphson has the advantage

of quadratic convergence, but the Hessian size (coupling e[ 52
between rotations and CI variables in particular) limits the Z C,=0
method to less than 100 000 Slater determinants (at most 18 £1\0C0Xpef =0

active Cl orbitals and 18 active electrons) on a standard

workstation. the Hessian matrix has a zero eigenvalue for the vector that
The Newton—Raphson Equations. The total energy at  corresponds to the Cl eigenvector associated with the eigenvalue

iteration (iter-1) is expanded in a Taylor series in the variables E. Different techniques can be used to remedy the problem,

{X}i=1nw X is represented as a linear vector of the variables and Bisson’s shift technigd® has been implemented. A

and Cy, nyyr being the total number of variables projectorPg, is added to the Cl Hessian matrix that removes

the intrinsic eigenvalue without perturbing the convergence.
nvar

EM(x) = EM(x=0) + } g(x=0)-x, + Po = Wle, W]
=
Nvar whereg is a large positive number.
ZXi-Hes§(x=0)-xi (5) The Newton-Raphson eq 7 can be solved by a Choleski

2= decomposition technigdiefor cases of moderate Hessian size
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(3000-5000). For larger cases, the preconditioned generalized TABLE 2: Study of CH,4. Total Energy and Number of
minimum residudf (GMRES) method is more appropriate. Iterations To Converge the PEMCS_C'; Cat|)9U||a“0n by
In the cases where the Hessian matrix has negative eigen-2Ptimizing Rotations among Occupied Orbitals

values, a modified constraint algorithm of Fletcldras been strongly occupied weakly occupied total PEMCSCF  no. of

implemented. A submatrix of small size (+8800) is extracted orbitals orbitals energy (au) iterations
from the Hessian matrix, corresponding to its smallest diagonal symmetry-adapted symmetry-adapted—40.243 417 4
elements and the largest elements of the gradient vector. Thesymmetry-adapted bond-type orbitals —40.261 522 16
exact constraint algorithm of Fletcher is then applied to this Pond-type orbitals - symmetry-adapted —40.261 522 16

submatrix, and since it is small, a Givens diagonalization can hond-type orbitals  bond-type orbitals —40.261 522 3

be performed at a low cost. The optimized shift can then be
used in the GMRES algorith#. The inverse of the submatrix

is easily calculated after diagonalization and supplies us a
preconditioning matrix of choice for the GMRES method. The Nbasis Nbasifloccupied

solution of eq 7 Iea_ds to an updated set of molecular _orbitals ¢§K+l)(x) = §0i(K) + injq)i(@ 4 Z Z xikxkj(pi(K) (9)

that are used in an iterative process until both the gradient and = [Sll=

the step in the rotation variable space are simultaneously lower

than a small threshold (typically 16). The Preoptimization Process: Orbital Localization. Sev-

The Rotation Variables. Contrary to CASSCF calculations, eral author¥ have pointed out that rotations among occupied
the energy is not invariant upon rotations among the Cl active orbitals are somewhat problematic. A first step in the calcula-
occupied orbitald! These rotations have to be included in the tion only optimizes the rotation among the occupied orbitals
variable set as well as the rotations between doubly occupiedusing the guess orbital space. Since the number of occupied
and CI active orbitals. Rotations among doubly occupied orbitals that have to be optimized is relatively small, the four-
orbitals and rotations among singly occupied are redundant andindex transformation of the two-electron integrals, performed

The second-order Taylor series can then be writterCiss
I,n+n

thus are removed from the orbital optimization set. every MCSCEF iteration, can be done in memory at a low cost.
A second-order Taylor series for eq 3 can be written for all The transformation from the atomic basis set to the molecular
the occupied orbitals: basis set is performed once at the first iteration. This process
defines an intrinsidocalization methogdseveral properties of
D () basis © Mbasifloasis © the preoptimization algorithm may be illustrated on an example.
pi TR =@ + inj(pi + Z inkxkjﬁﬂi Study of CH. A quadruple&?® + polarization basis set
= J=1k=

[C(13s7pld/8s4pld), H(9s1p,4siyC) = 0.75 anduy(H) =
1.15] was used for this case at a tetrahedral geometry of CH
The CH distance was fixed at 2.052 282 & he total Hartree
Fock energy in this basis set s40.214 360 au. The guess
orbital space is constructed with the five occupied HF orbitals
(one doubly occupied and four strongly occupied orbitals) and

It appears from the second-order expansion &t is a
function of rotations among virtual orbitals. However, for o
and ¢ occupied orbitals and,w',v"', and V" virtual orbitals,
the following equation is verified

PE 2E four antibonding orbitals obtained by external projection of the
(—) = (—) =0 1s atomic orbitals of the H atom (weakly occupied orbitals) in
Kogwfx=0  \OKy Xy [x=0 the PEMCSCEF calculation. All these orbitals can be combined

to form symmetry-adapted orbitals or localized (bond-type)

while eq 8 is only satisfied at convergence: orbitals. This guess orbital space would be a good candidate

e for a valence CASSCF calculation of G The 1s orbital of
(—) =0 (8) the carbon is doubly occupied in all the Slater determinants but
IXK0IXyvr] x=0 optimized. The initial calculation only optimizes the rotations

. . . among the occupied orbitals (no virtual orbitals are involved).
The convergence properties are not altered assuming that thISAlthough the two-electron integrals over the basis functions are
”.‘at“f eIE_mr—i\nt IS aLways equaldtcf> Zez'?OHROtat'.OBIS among h calculated using symmetry, a two-electron integral four-index
\r/r;g?r?x 8fr t#: fo?art(ieoh élis((;?brﬂglv\?ariarlglr&to? t;wlgnziobelesrﬁ;'h;se transformation has been implemented to calculate the two-
the following structure P electron integrals over MOs that are not symmetry_—adapted.

' However, the symmetry can be constrained by deactivating all
the rotations that break the symmetry. The total energy and
the number of iterations necessary to get to the convergence
orbitals orbitals are reported in Table 2. While calculations using symmetry-
adapted orbitals or localized (bond-type) orbitals converge
without difficulty, the Hessian matrix in the former calculations
A B has negative eigenvalues reflecting the fact that a point of lower
energy exists. In this particular example, the use of localized
(bond-type) orbitals allows convergence to a lower energy. The
fast in-core two-electron transformation allows the user to
improve the localized (bond-type) guess orbitals for the
1B 0 subsequent step of orbital optimization and thus is referred to
as a preoptimization process. W&® has shown on some
examples that the complete multiconfiguration self consistent
field theory® (CMC), in which a subspace of the PEMCSCF
configuration interaction space is used, converges to lower
where'A = —A, A is the submatrix of the rotation among energies using localized (bond-type) orbitals than do symmetry-
occupied orbitals, anBl is the submatrix of the rotation coupling  adapted orbitals. The PEMCSCEF results oruGkbw a similar
occupied and virtual orbitals. behavior.

occupied virtual
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TABLE 3: Study of CH,. Total Energy, Shift of the SCHEME 1

Hessian Matrix, Norm of the Gradient Vector, and Norm of

the Step X in the Orbital Rotation Space VR N N\

iteration energy (au) shift |grad x| 2 b 2 ¢ b d

1 —40.261 522 0.033 020 0.093 254 0.548 008 m
2 —40.274 910 0.0 0.020 811 0.235 881
3 —40.275861 0.0 0.003051  0.005855 b . 4 N d'/\b
4 —40.275 863 0.0 0.000 003 0.000 018 a ¢
5 —40.275 863 0.0 0.000 000 0.000 000

a PEMCSCF occupation number greater than some tolerance,
say 0.1), while performing all the single and double excitations
from the references to the remainder of the complete optimized
orbital space. The total energy will be higher than the CAS CI
total energy, GMO(FCI), but should take into account a large
fraction of the CAS correlation energy and include important
effects of spin recoupling.

To take into account dynamical correlation effects, the
GMO2(SDTQ) procedure can be used to isolate a configuration

¥, reference space for subsequent MRCI calculations with excita-
( b) = 5;’3‘% — 5ib¢a tions outside the optimized orbital space.
IXapf x=0 The GMO2(SDTQ) configuration interaction program is
developed to minimize the amount of memory and disk space

aTrust region radius has an initial value of 0.5.

The Optimization Process. The rotations among the oc-
cupied orbitals are kept active during the optimization process
in which virtual orbitals are added to the occupied in order to
be optimized. The values of the Hessian matrix and gradient
vector elements are calculated analytically using egs&with
the orbital derivative expressions:

32¢i 1 bcc asc acd b «d needed. The two-electron integral list over the PEMCSCF
(3Xabaxca)x—o = = 5l9d070a = 0i0y) + ¢(010p — 0i97) + optimized orbitals is, in all the cases, small enough to be stored
- dec cod cod dec in memory at all time, roughly proportional td/8. The process
Pp(0i05 — 0i05) + (070, — 0;0y)] implicitly builds the list of configurations and for each electronic

] ) ) o configuration generates only the singly and doubly excited

_ The calculation of the Hessian matrix requires integrals that configurations interacting priori with the current one, by using
mvol_ve at most two virtual orbitals. The orbital Hessian and e following pattern (see Scheme 1). Double excitations are
gradient are calculated by a double Fortran loop over the possible from orbitalp, and gy, doubly or singly occupied in
occupied molecular orbitals where the first and second deriva- the current configuration to orbital. and¢q, singly occupied
tives of the one-electron, Coulomb, and exchange integrals aregr ynoccupied in the current configuration. The single excitation
calculated analytically. The nontrivial part of the mixed Hessian s realized from orbitalpa to orbital ¢p.28
is calculated directly by reproducing the Cl algorithm, and the  Thjs pattern generates all the possible interacting doublets
analytical derivatives of thi; integrals are calculated as needed of configurations without repetition. When two interacting
and thus do not require any additional memory. electronic configurations (I and J) are generated, the list of Slater

Study of CH. Using the preoptimized localized (bond-type)  determinants of configuration | is implicitly constructed, and
orbitals as guess vectors, the PEMCSCF calculation is performedynjy the nonzero CI matrix elements are evaluated by generating
with an orthogonal complement of the basis set as virtual the Sjater determinants of configuration J that are singly and
orbitals. The total energy, norm of the gradient vector, norm doybly excited from the current determinant. The value of the
of the stepX and shift of the Hessian matrix are reported in - | matrix element is easily obtained and most of the effort is
Table 3. The calculation converges in five iterations using the gevoted to calculating theddresof the generated determinant
one-step NewtonRaphson algorithm with a threshold on the i the Jist of the determinants of configuration J. This address
norm of the gradient equal to 1@ . is a function of the number of unpaired electrons in configuration

The GMO2(SDTQ) Energy Evaluation. Although the 3 By restricting the excitation in GMO2(SDTQ) to quadruple
PEMCSCF method gives a large amount of correlation energy, excitations, the arbitrary limit of 14 unpaired electrons does not

it retains some intrinsic problems connected to the absence Ofrepresent a restriction but allows us to encode a determinant
configurations with unpaired electrons like dissociation into py ysing a technique similar to that in sectioR®3.

multiplets and spectroscopic states. However, to fairly compare

GM02 W|th the CASSCF method, a fu" CI |n the PEMCSCF Nunpaired electrons
optimized orbital set should be used, GMO(FCI). While it is address= Z occ@)zi’l
possible to optimize 18 orbitals with 18 active CI electrons using i&

the PEMCSCF method, the full CI calculation in the space of
these 18 orbitals is beyond reahin the mean time, it is likely where occ equals 0 for am spin and 1 for & spin.
that there is only a small number of CSF in this full-Cl The block of CI matrix expressed in the basis of Slater
calculation that have an important effect. Thus, an alternative, determinants can be transformed easily to a spin-adapted
invoking only single, double, triple, and quadruple excitations configuration state function basis if necessary. The program
(GMO2(SDTQ)), has been developed for large applications. calculates the lowest eigenvalues of this ClI matrix with a
For the GMO2(SDTQ) calculations, a full CI calculation is conjugate gradient algorithm recalculating the Cl matrix every
performed only within the strongly occupied orbitals of the iteration.
PEMCSCF (orbitals with a PEMCSCF occupation number  Study of CH. To evaluate the quality of the GMO2 method,
greater than some tolerance, say 0.4) and subsequently followedhe GMO2(FCI) and GMO2(SDTQ) energies are compared to
by all the single, double, triple, and quadruple excitations the CASSCF energy. In Table 4, the total energies are reported
(SDTQ) of all the possible active orbitals from this CAS for CH4 using the symmetry-adapted optimized PEMCSCF
reference space into the rest of the optimized orbitals. As the orbitals or the localized (bond-type) orbitals. The CASSCF
Cl size increases drastically with the number of orbitals and energy is lower than the GMO2(FCI) by 2.8 kcal/mol when
active electrons, the triple and quadruple excitations can bethe PEMCSCEF is constrained to converge to symmetry-adapted
restricted to a small dimension orbital subspace (orbitals with orbitals and by 3.0 kcal/mol when the localized orbital solution
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TABLE 4: Total Energy of CH 4, at Different Levels of
Theory: Hartree —Fock, PEMCSCF, GMO2(SDTQ),
GMOZ2(FCI), and CASSCF

total energy (au)
localized (bond-type)

total energy (au)
symmetry-adapted

method orbitals orbitals
HF —40.214 360
PEMCSCF —40.275 863 (13.2) —40.247 861 (30.2)
GMO2(SDTQ) —40.292 123 (3.1) —40.292 463 (2.8)
GMO2(FCI) —40.292 161 (3.0) —40.292 521 (2.8)
CASSCF —40.296 988

a Energy differences from the CASSCF energy in kcal/mol.

TABLE 5: Total Energy of H 4 at the GVB-PP,
GVB-PP(FCI), PEMCSCF, GMO2(FCI), and CASSCF
Levels of Theory?

localized (bond-type)
orbitals (au)

symmetry-adapted
orbitals (au)

GVB-PP —2.037 91 —1.984 90
GVB-PP(FCI) —2.060 37 (9.9) —2.049 89 (16.5)
PEMCSCF —2.037 91 —2.002 57
GMO2(FCI) —2.060 37 (9.9) —2.069 64 (4.1)
CASSCF —2.076 17

a Energy differences from the CASSCF energy in kcal/mol.

TABLE 6: Total Energy of Benzene at Different Levels of
Theory: Hartree —Fock, PEMCSCF, GMO2(FCI), and
CASSCF with Localized (Bond-Type) Orbitals and
Symmetry-Adapted Orbitals?

localized (bond-type)
orbitals (au)

symmetry-adapted
orbitals (au)

HF —230.673 65

PEMCSCF —230.718 27 —230.704 35
GMO2(FCI)  —230.744 63 (2.3) —230.747 48 (0.5)
CASSCF —230.748 25

aEnergy differences from the CASSCF energy in kcal/mol.

is used. These small differences can be interpreted as the effecg

of configurations with unpaired electrons on the orbital opti-

mization. These differences represent only 5.8% of the cor-
relation energy at the CASSCF level. GMO2(SDTQ) is only

higher than the GMO2(FCI) by a fraction of a kcal/mol and

thus represents an accurate approximation of GMO2(FCI).

The GMO2 localization procedure is illustrated in the study
of a square W system and in the study of the ground state of
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two H—H antibonds. Performing the FCI in these optimized
orbitals gives an energy difference equal to 9.9 kcal/mol
compared to the CASSCF energy. Using symmetry-adapted
(delocalized) orbitals, the GVB-PP converges to a higher energy
and the FCI performed with the optimized orbitals is 16.5 kcal/
mol higher than the CASSCF energy. While the PEMCSCF
procedure converges to higher energy when constraining the
orbitals to be symmetry-adapted, the GMO2(FCI) energy is only
4.1 kcal/mol higher than the CASSCF energy.

GMO2 Study of the Localization Process in BenzeneThe
geometry of the benzene molecule was optimized at the
Hartree-Fock level using a triplé- basis séf for C(10s6p/
5s3p) and H(5s/3s). The CC and CH bond distances are equal
to 1.387 and 1.073 A, respectively. GMO2 and CASSCF
calculations were performed at this geometry in therbitals
of the molecule only (six electrons in six orbitals). The
Hartree-Fockocy andocc were kept frozen in the calculations,
and we focus here on the localization of the orbitals within the
m system of benzene and its effect on the energy. For the
GMO2 calculation, guess orbitals are constructed using the three
HF occupied orbitals and three virtual orbitals obtained by
external projection of ad-hoc carbon 2p orbital combinations.
These orbitals arBe, symmetry-adapted (delocalized) orbitals.
The first step in the GMO2 calculation is to preoptimize the
guess vectors. At the first iteration, the Hessian matrix has three
negative eigenvalues whose respective eigenvectors are or-
thogonal to the gradient vector. These eigenvectors represent
the simultaneous mixing of the strongly occupied orbitals among
themselves and of the weakly occupied among themselves.
Although the Newtor-Raphson algorithm optimizes an orbital
step orthogonal to these eigenvectors, the final orbital step is
obtained by adding a linear combination of these eigenvectors
to the Newtor-Raphson step. At the second iteration, the
Hessian matrix has negative eigenvalues nonorthogonal to the
radient vector, and thus the orbital step is optimized using the
onstrained algorithm of Fletcher. The preoptimization process
converges then to localized orbitals. These orbitals are finally
fully optimized by completing ther basis set with virtualr
orbitals. At the PEMCSCEF level of theory, the electronic
structure can be interpreted as a Kélatleicture where the pair
excitation from a bond orbital to its corresponding antibonding
localized orbital maximizes the electron correlation. The GMO2
calculation is completed by performing a full CI calculation in

benzene. In order to calculate relative energies and test thethe 5 orbitals. The GMO2(FCI) energy is higher than the

reliability of the GMO2 procedure, the linear dissociation of
multiple bonds is studied with two examples:; Ahd GHo.

Results and Discussion

Study of the GMO2 Localization Procedure in a Square
H,4 System. In the planar H exchange reaction of tith H,

m-CASSCF energy by only 2.3 kcal/mol.

The optimized GMO2 localized orbitals can be transformed
to symmetry-adapted orbitals by appropriate linear combination.
A second GMO2 calculation was performed constraining the
orbitals to be symmetry-adapted. Although the PEMCSCF
energy is then 8.7 kcal/mol higher in energy than the PEMCSCF
energy calculated with localized orbitals, the GMO2(FCI) energy

the transition state of the system is characterized by a squarelsing the symmetry-adapted orbitals is only 0.7 kcal/mol higher

geometry. While the GVB-PP method can represent the

reactants and products of the reaction by a perfect pairing of

two electron pairs, this method is unsuitable to calculate the
energy of the square transition state. GVB-PP(FCI), GMO2-

than the CASSCF energy of benzene.

Although the PEMCSCF procedure tends to converge to
lower energies using localized orbitals than symmetry-adapted
(delocalized) ones, the GMO2(FCI) energy is lower using

(FCIl) and CASSCF calculations were performed using a Symmetry-adapted orbitals and gives results closer in energy

quadruples? + polarization basis set H (9s1p/4s1p)(H) =
1.0) at the CASSCF optimized geometdyg = 1.287 76 au)

to the CASSCF results. The GMO2 energy may result in a

lower energy using localized orbitals for larger systems, in which

of the transition state. PEMCSCF and GVB-PP calculations the localized bonégantibond excitations may play a dominant

are performed using both delocaliZBg, symmetry orbitals and

localized orbitals. The results are presented in Table 5. The

GVB-PP and PEMCSCF procedures converge to a similar

role, especially at the SDTQ level.

GMO2 Study of the Linear Dissociation of Multiple
Bonds. In order to investigate the eventual deficiencies of

energy (if not equal) using localized orbitals in both calculations. GMO2 compared to CASSCF, multiple bond breaking is studied

These localized orbitals are described by tweHibonds and

in two examples. Since GMOZ2'’s orbitals are optimized in a
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-109.2 Figure 3. Potential energy curves fdll and“=~ states of CH at
15 25 3.5 45 55 65 75 (B) various levels of theory.
d(N-N)
Figure 1. Potential energy of N'Sg* at various levels of theory. GMO2 Study of the Linear Dissociation of GH. While

the linear dissociation of £, into two CH fragments overlaps
with the previous study as it is also a multiple-bond-breaking
reaction, the spin-recoupling effects are different because the
ground state of CH is 8l at the CASSCF level instead of a
4%~, which is the HF ground state of CH. A quadrugé-+
polarization basis set: C(13s7p1d/8s4pld), H (9slp/4sip) (
(C) = 0.85 andap(H) = 0.95) was used in this study. A
CASSCEF calculation involving only CC bonds would dissociate
C,H, into two fragments CHYE ") with an energy profile similar
to the one calculated forNN A complete valence CASSCF (10
electrons/10 orbitals) would dissociate into two fragments CH
(317).
-109.14 . T T T . GMO2 and CASSCEF calculations were performed orfEre
8 18 20 21 22 23 24 and 2IT states of CH and on theXy* ground state of @4,.
d(N-N) The GMO?2 study of CHZ~ was performed by optimizing five
Figure 2. Potential energy of NSg* near the equilibrium bond  Orbitals: two singly occupiedr, and 7y orbitals, one singly
distance at GMO2 and CASSCF levels of theory. occupied nonbonding orbital, the bondingy orbital, and a
correlating antibondingocy*, the latter two with variable
calculation involving only pair electron (PE) excitations, it is occupancy. The GMO2 study of th&l state of CH was
expected that the dissociation into high-spin fragments may be performed by also optimizing five orbitals: one singly occupied
problematic. However, the spin recoupling in GMO2 is made 7« Orbital, two strongly occupied orbitals, one weakly occupied
possible by the configuration interaction using PE-optimized oc+* orbital, and the weakly occupiedy orbital. For both
orbitals. states, a GMO2(FCI) was performed using the optimized orbital
GMO2 Study the Linear Dissociation of No. A quadruple- space and compared to a CASSCF calculation in an equivalent
&2+ polarization N(13s7p1d/8s4pldy{= 1.0) basis set was space’! The results are presented in Figure 3. Both GMO2
used in the following calculations. The potential energy surface and CASSCF energy curves present a minimum for the same
was calculated at several levels of theory, HF, PEMCSCF, CH distances: the equilibrium distance is equal to 2.15 au for
GMO2(FCI) and CASSCF (Figure 1). The active Cl orbital the?IT state and 2.05 au féE~. The energy difference between
space in the optimization of the orbitals in the GMO2 and GMO2 and CASSCEF is constant for CH distances close to the

CASSCF calculations is composed of one nonbonding orbital €quilibrium geometry and is equal to 0.4 and 1.2 kcal/mol for

-109.08

-109.09 1

—D0— GMO2(FCD
—2— CASSCF

-109.10 1

-109.11 4

Energy (au)

-108.124

-109.13 1

on each nitrogen atom, three bonding orbitats sy, andy) the °IT and“=™ states, respectively.

and their corresponding antibonding orbital$, (7¢*, and ,*). The energy profile of the £, linear dissociation reaction
In this orbital space, the CASSCF dissociation limit for the can be separated into two regions:

ground state X" is the singlet coupling of two nitrogen atoms 1. CC distance ranging from 2.0 to 3.6 aun this region,

in their ground statéS—(s’p%). Although the N triple bond the HF reference is dominant and can be interpreted as a triple
may be represented at the equilibrium distance by a perfect-bond. The CH bond distance is optimized at the CASSCF level.
pairing GVB reference, the asymptotic value of the GVB-PP The potential energy curve in this region is calculated at several
energy does not represent the singlet coupling of*8vnitrogen levels of theory, HF, PEMCSCF, GMO2(SDTQ), GMO2(FCI),
atoms. The PEMCSCF wave function shows a similar behavior and CASSCF, and represented in Figure 4. The GMO2(SDTQ)
and does not dissociate into two nitrogen ground state atoms.is performed with a reference configuration space restricted to
While the correct spin coupling is prohibited by both GVB-PP a single Slater determinant built with the strongly occupied
and PEMCSCF wave functions, using the orbitals optimized orbitals of the PEMCSCF calculation. In this region, the
by the PEMCSCEF procedure in a full configuration interaction maximum energy difference between GMO2(SDTQ) and GMO2-
reproduces the CASSCF energy accurately. The maximum (FCI) is small (less than 0.3 kcal/mol at the equilibrium
energy difference between the CASSCF energy and the GMO2-geometry) and becomes significant (equal to 2 kcal/mol) when
(FCI) energy is obtained for a internuclear distance close to the thes* orbitals’ occupancy reaches 0.283 for a CC distance equal
equilibrium geometry and is less than 2 kcal/mol, see Figure 2. to 3.3 au. It is likely that configurations involving an orbital
Thus, the GMO2 procedure can reliably predict spin recoupling with an occupancy higher than 0.3 must be included in the
and multiple-bond breaking. reference space for the GMO2(SDTQ). The energy difference
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Figure 6. CH bond distances as a function of CC bond distances for
dissociation of thé=g" state of GH, at the CASSCF level.

C-C distance (au)

Figure 4. Potential energy curves for thelf, =g" state at various
levels of theory for bond distances between 2.0 and 3.6 au.

TABLE 7: Total Energy (au) of C,H, for a CC Internuclear

-76.54 Distance of 4.5 au at the PEMCSCF, GMO2(FCI), and
CASSCEF Levels of Theory. Two Sets of Orbitals Are

76.56 7/ \ PEMCSCE Optimized for the First Root of the PEMCSCF Calculation
= ~76.58 7 orbital set 1 orbital set 2
< 76601 Gmo2 PEMCSCF —76.550 44 —76.519 90
gﬁ ] GMO2(FCI) —76.62553 —76.632 00
5 -76.62 CH (2[D + CH (2ID) CASSCF —76.643 47
o 76.64 1

CASSCF ~ee
-76.66 PEMCSCF
-76.68 43- +43- ’

CASSCF

767077171 T T T T T T
4 5 6 7 8 9 10 11 12 13 14 15

C-C distance (au)

Figure 5. Potential energy curves for theld, =g state at various
levels of theory for bond distances beyond 3.6 au.

between the GMO(FCI) and CASSCF results increases from

3.3 to 6.5 with the CC bond distance. At the equilibrium

geometry, the difference is equal to 4.0 kcal/mol (2.4 kcal/mol

of this difference is from the isolated fragments ¢Et), and

is small compared to the value of the electron correlation energy Figure 7. Schematic representation of diabatic energy curves at the
at the CASSCF level (95 kcal/mol). This energy difference is CASSCF and PEMCSCF levels.

also small compared to the contribution to the total energy of

electronic configurations with unpaired electrons, a value equal different aSSOCi?IEd e"efggef] and different Cl .exlpan.sions. A
to the difference between the GMO2(FCI) and PEMCSCF Qfl\f/IOZ(FCI) performed wit tl ese op;]tlmlzedlorbltas_glves% tV\;]o
energies (36.5 kcal/mol). different energies. In Table 7, the total energies of the

2. CC distance ranging from 3.6 to 15 atFor intermediate PEMCSCF, GMO2, and CASSCEF calculations are reported. The
CC distances, an avoided crossing between an attractive covalentASSCF results are comparable to the GMO2 (FCI) results
15,+ arising from the singlet coupling of two CEE~ states obtained with the orbital set 2 since the Cl expansions are
and a repulsivéZy* arising from the singlet coupling of two S|m|Ia_r. Thus, the PEMCSCF calculation reflects that the
CH 21 states is predicted. The challenge of GMO2 is then to €"0SSINg has already occurred. The effect of the spin-coupling
correctly describe the complete change in the wave function constraints at the PEMCSCEF level are illustrated by a schematic
(CI coefficients and orbitals). The potential energy curve is "€Presentation of diabatic energy curves (at the CASSCF and
given in Figure 5 at the PEMCSCF, GMO2(FCI) and CASSCF PEMCSCEF levels) in Figure 7. The PEMCSCF wave function
levels. Apart from the avoided crossing that occurs in that that dissociates into two CHX") is constrained to a perfect-
region, the repulsivéA, state of GH, is close in energy to the ~ Palrng coupling of the two fragments. The difference in energy
155", However, at the PEMCSCF level, these two states do with the CASSCF dissociation energy is larger than the
not mix and the state is easily identified by the fact that the equivalent difference concerning the dissociation into two CH
Cl coefficient on the configurationc?oci?occmm?is equal  (T1) fragments.  Although the GMO2 procedure depends
implemented in the GMO2 code. At the CASSCF level of Maximum difference of the total energy is only higher than 7
theory, the nature of the wave function changes for a cC kcal/mol for CC internuclear distances close to 5.0 au. For long
distance close to 5.5 au. The optimized CH bond distance CC distances, the GMO2 and CASSCF energy difference is
changes from a value that is close to the optimized equilibrium extremely small (lower than 1 kcal/mol) and close to the
bond distance in CH=~ to a value close to that in CH1 (see difference calculated for the isolated fragments.

Figure 6). Depending on the guess vectors used to initialize  Unlike the GVB-PP that would dissociateld; into two CH

the GMO2 optimization, the calculation for the CC distance (*=~) fragments, the GMO2 procedure takes into account the
equal to 4.5 au converges to twW&y" wave functions, both interaction of low-energy states. The energy difference between
first roots of the PEMCSCF configuration interaction with GMOZ2(FCI) and the CASSCF method is small at all geometries.

2[1+2[1
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Conclusion. The GMO2 method, a PEMCSCF orbital
optimization followed by a SDTQ configuration interaction
energy determination in the active space, is a viable alternative
to CASSCF methods when the number of active electrons is
very large. In the future, the method may be particularly useful
in transition metal systems, where complexes with multiple

metal-ligand bond% and dimers with multiple metaimetal
bonds or bridging ptacceptor ligands have significant multi-
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